
1

Unreal Engine 5.4 Raytracing Guide
July 1, 2024

Introduction
UE5 ships with new rendering technology, mainly Lumen for lighting and Nanite for scalable geometry

rasterizing. With those changes, raytracing settings and workflow are changed to support the new tech.

This document tries to cover the important details about hardware raytracing in UE5. This document

should not be considered as a replacement of the Epic’s official documentation. This document is written

to complement the information covered official documentation about the topic of hardware raytracing.

So, it is recommended to refer to the official documentation links referenced through this document.

Hardware Ray Tracing and Path Tracing Features | Epic Developer Community (epicgames.com)

This document refers to some advanced features and enhancements available only in the Nvidia RTX

branch of UE5 (NVRTX). To learn more details about these features, it is also recommended to refer to

the NVRTX documents to learn more about its features.

NvRTX/UnrealEngine: Unreal Engine source code (github.com)

Raytracing in UE5 vs UE4
One of the main differences between UE4 and UE5 is the introduction of Lumen. Lumen combines two

key rendering components (reflections and global illumination) in one system instead of two separate

systems as in UE4. This allows re-use of data structures for efficiently solving multiple rendering

components.

Lumen is heavily dependent on raytracing. For hardware that doesn’t support raytracing, Lumen utilizes

software raytracing (SW RT) which requires mesh Distance Fields (DF) to be generated for all meshes in

the scene. However, when Hardware Raytracing (HW RT) is available and enabled, Lumen leverages it to

improve accuracy and visual fidelity.

The following graph summarizes how raytracing effects are managed in UE5 vs UE4.

https://dev.epicgames.com/documentation/en-us/unreal-engine/ray-tracing-and-path-tracing-features-in-unreal-engine?application_version=5.3
https://github.com/NvRTX/UnrealEngine/tree/nvrtx-5.3

2

RT effects highlighted in orange are deprecated in UE5 and dropped in UE5.4 as they are replaced by

Lumen sub-systems. RT Translucency is still available in addition to RT Ambient Occusion which requires

Lumen GI to be disabled.

Enabling Raytracing in UE5
The following steps are a quick guide for enabling hardware raytracing in UE5:

1. Hardware Raytracing
The first step is to make sure Support Hardware Ray Tracing is enabled in the project settings under the

Rendering section. This requires few other options to be enabled including the Support Compute Skinned

Cache and having the Default RHI set be set to DirectX 12. Once these options are set, UE5 rendering

systems can leverage hardware raytracing.

2. Shadows
To enable raytraced shadows in UE5, simply enable the Ray Tracing Shadows option in the project settings

under the Rendering section. Advanced raytraced shadow options for controlling quality and performance

will be covered in a later section.

The NVRTX branch has an additional option for Ray Traced Sampled Direct Lighting (RTXDI). This feature

allows rendering high numbers of accurate area light shadows in real-time at relatively fixed performance

cost with visuals comparable to offline path-tracing.

Additionally, RTXDI supports rendering dynamic and accurate colored shadows when light passes through

transparent material. This feature can be enabled in the project settings by checking the Transparent

Shadow (RTXDI) option.

U
E4

RT Shadows

RT Translucensy

RT Reflections

RT Global
Illumination

RT Ambient
Occlusion (AO)

U
E5

RT Shadows

Lumen

Reflections

Translucent
Refractions

Global Illumination

Short Range AO

3

The following links provides more information about Sample Lighting and its integration in NVRTX:

• NVIDIA RTXDI | NVIDIA Developer

• UnrealEngine/Docs/RTXDI at nvrtx-5.3 · NvRTX/UnrealEngine (github.com)

3. Global Illumination (GI)
Lumen is the default system in UE5 for dynamic GI. In the project settings, make sure that the Use

Hardware Ray Tracing when available is enabled under the Lumen sub-section.

In NVRTX, Lumen GI benefits from several optimizations and enhancements including:

- Shader Execution Reordering (SER) for reducing the cost of sorting when evaluating shaders. In

certain cases, this feature can lead to significant performance boost specifically with Lumen

Reflections

- Leveraging ReSTIR to accelerate Lumen GI allowing it to scale with the high light count permitted

by RTXDI

4. Reflections
Similar to GI, Lumen is set as the default system for rendering reflections, so enabling the Use Hardware

Ray Tracing when available option allows reflections to be rendered using HW RT.

To get accurate HW RT reflections, it is recommended to switch the Ray Lighting Mode to Hit Lighting for

Reflections.

Similarly, it is possible to get better reflections on translucent materials by enabling High Quality

Translucency Reflections.

Keep in mind that the previous options (i.e. Hit Lighting and High Quality Translucency Reflections) have

higher GPU cost.

With NVRTX, Lumen reflections benefit from the same optimizations listed previously for Lumen GI.

5. Refractions
Enable Ray Traced Translucent Refractions to leverage HW RT in Lumen when rendering translucent

materials. This requires Hit Lighting to be enabled and increases the GPU cost.

The following screenshot highlights all the previous options that are required to enable raytracing in UE5.

https://developer.nvidia.com/rtx/ray-tracing/rtxdi
https://github.com/NvRTX/UnrealEngine/tree/nvrtx-5.3/Docs/RTXDI

4

Lumen Raytracing Overview
This section goes into more detail about the Lumen pipeline and its data structure. The goal is to provide

high-level understanding about how it works and how hardware raytracing is essential to get the best

quality and performance out of Lumen.

As mentioned earlier Lumen solves reflections and GI differently from the UE4 raytracing counterparts.

Lumen generates a data structure from scenes’ surfaces called the Surface Cache to perform expensive

raytracing and shading calculations in a more efficient way. When the Surface Cache is visualized, it

resembles a pre-rendered low-res version of the actual scene which is referred to as the Lumen Scene.

The Lumen scene is automatically generated; however, users have few options to control/debug and fix

the generated scene if necessary, as will be covered in later sections.

For reflections, by default Lumen utilizes the Surface Cache for both hardware and software raytracing.

Generally, the reflection quality from the surface cache is not accurate due to the simplified nature of the

Lumen Scene. For most cases, Surface Cache might work fine for blurry off-screen reflections, however

for sharper reflections (e.g., mirrors) it may not be sufficient.

To address this issue, Lumen does screen space traces using rendered GBuffers to provide better quality

reflections when possible while keeping Surface Cache for off screen only.

In the case of using HW RT, Lumen provides high quality reflection mode called Hit Lighting where the

actual material is evaluated instead of the Surface Cache. This mode provides the best and most accurate

reflections, at the cost of additional GPU performance.

The following diagram explains in high-level how Lumen works and where it uses hardware raytracing:

5

It is worth noting that HW RT generally provides better quality Surface Cache than SW RT. It is possible to

visualize the difference by using the Lumen reflections view:

Lumen Visualization
Options

Lit Scene

Visualization for Lumen
Software RT

Visualization for Lumen
Hardware RT

Screenspace
traces

Software
raytracing

Tracing against
detailed SDF per

mesh

Tracing against
global SDF for

scene

Tracing off after
certain distance

Hardware
raytracing

Near field
tracing

Tracing surface
cache

Tracing with Hit
Lighting

Far field tracing
Tracing surface

cache

Detailed shadows and geometry Low resolution shadows and geo

6

To keep Lumen scalable in large open-world environments using the World Partition, after the ray tracing

scene radius -which is by default 1km from the camera-, rays will trace against another simplified version

of the scene referred as the Far Field to extend global illumination and reflections at a cheaper cost. The

Far Field makes use of Hierarchical Level of Detail (HLOD) meshes generated by World Partition. The

HLOD1 mesh is used for Far Field representation.

For additional details about Lumen and its sub-systems it is recommended to refer to the following

documents:

- Lumen Technical Details | Epic Developer Community (epicgames.com)

- Lumen Performance Guide | Epic Developer Community (epicgames.com)

Nanite Raytracing Overview
Nanite is a new approach for efficiently storing and rasterizing dense meshes where theoretically a

triangle could be the size of a pixel. Nanite meshes are supported in raytracing effects and are enabled by

default.

Fallback Mesh
To keep raytracing performance scalable, Nanite generates a decimated version of the original mesh

referenced as Fallback Mesh that is used with HW raytracing effects.

For low-frequency effects such as GI, rough reflections or smooth area shadows, any disparity between

the rasterized Nanite mesh and the ray traced fallback mesh unlikely to be noticeable; however, this might

be an issue with RT effects that require accuracy such as hard shadows and mirrored reflections.

For hard shadows where self-shadowing might be an issue as shown in the screenshots below, it is possible

to minimize the self-intersection by increasing the trace distance using the following CVar:

r.RayTracing.Shadows.AvoidSelfIntersectionTraceDistance

Far field

Hit Lighting /
Surface Cache

Screen Traces

More than 1 kilometer

Offscreen

GBuffers

https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal-engine?application_version=5.3
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-performance-guide-for-unreal-engine

7

Self-shadowing issue due to
silhouette differences

between Nanite and fallback
mesh

Solving self-shadowing by
tweaking the Trace Distance

CVar

For mirrored reflections where the visible mismatch is a noticeable issue, it is possible to control the

decimation to have improve the fidelity of the fallback mesh. This can be done either by:

- Modifying the ‘Fallback Relative Error’. Smaller error values increase the triangle count of the

fallback mesh.

- Modifying the ‘Fallback Triangle Percent’. Higher percentage values increase the triangle count.

Keep in mind that the triangle count of the fallback mesh directly affects the raytracing performance. So,

it is recommended to increase it carefully only for hero objects.

Streamed Out Mesh
For cases where visual fidelity is a greater priority than performance, Nanite supports streaming out high

LoD cut of the mesh to be used for raytracing effects. This can be done by setting the following Console

Variable (CVar): r.RayTracing.Nanite.Mode 1

Keep in mind that the Nanite streamed mode will generally perform slower than the Nanite Fallback mesh

due to the higher cost of building raytracing acceleration structure for denser geometry. Furthermore,

8

enabling this mode may substantially increase the memory footprint required by the denser geometry it

utilizes.

For more details and options about Nanite it is recommended to refer to the UE5 documentation:

- Nanite Virtualized Geometry | Unreal Engine Documentation

- Nanite Virtualized Geometry | Epic Developer Community (epicgames.com)

Basic Raytracing Settings
For full control on raytracing visuals and performance, raytracing effects can be controlled on a granular

level (e.g., per actor, component, light, … etc) or spatially using localized post-process volumes. In general,

this is still similar to UE4 but re-directed to be used with the new UE5 tech (i.e. Lumen).

Raytracing Culling
Ray tracing requires objects outside of the camera view to be present in the scene, especially for highly

reflective surfaces. This increases the cost of rendering the scene. Special culling modes are available to

help with optimizing performance with minimal visuals impact.

Ray tracing culling is enabled by default and it is possible to control the culling mode and settings through

the CVars: r.RayTracing.Culling.*

For detailed information about the culling modes and their settings, it is recommended to refer to the

following document:

https://dev.epicgames.com/documentation/en-us/unreal-engine/ray-tracing-performance-guide-in-

unreal-engine#culling

Although culling is essential for keeping the RT performance under control. It has overhead that can float

in scenes with excessive instance count. For such scenes with many disparate parts, it is possible to create

ray tracing groups to cull them as an aggregate. Actors need to be assigned the same group ID (other than

-1) to be culled as a single object. This help minimizing the culling overhead and allow prioritize culling

using Raytracing Group Culling Priority.

Raytracing Visibility
By default, raytracing is enabled for all meshes so they are included in the raytracing acceleration structure

which allows them to be visible in any raytracing effect.

Raytracing can be toggled by geometry type through CVars: r.RayTracing.Geometry.*

For static meshes, it is possible to override RT at multiple levels as listed below:

Type Level

Actors and Components A specific actor in a level or component in an actor class
Mesh Assets All actors/components referencing the asset

Material Sections All actors/components referencing the asset

Worth mentioning that controlling raytracing visibility just on a material section is generally less efficient

than disabling it at the mesh object or actor level. For example, if an object has two materials where one

https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Nanite/
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/ray-tracing-performance-guide-in-unreal-engine#culling
https://dev.epicgames.com/documentation/en-us/unreal-engine/ray-tracing-performance-guide-in-unreal-engine#culling

9

is invisible in raytracing, extra raytracing cost accrued due to the special way that segment of the mesh is

made invisible.

Raytracing visibility on level
actors

Raytracing visibility on static
mesh sections

The following graph illustrates the order of raytracing visibility for Static Meshes (SM).

Project
Settings

•Control raytracing effects globally in the project.
This overrides any option set on assets or actors.

SM Asset

•'Support Raytracing' on the SM assets overrides RT
visibility settings on SM sections and SM Actors

SM Material
Section

•'Visible in Ray Tracing' for a material section will
override the specific section on all SM actors

SM Actor

•Visibility in Ray Tracing' for a SM actor on impact
the specifc actor in the level.

10

Shadows Overrides

By default, all lights inherit the raytracing shadows setting from the project settings. It is possible to

override this setting for specific light actors in the level. However, disabling raytraced shadows on a light

will make it fallback to (virtual) shadow maps.

Keep in mind that in some cases raytraced shadows might be more performant than virtual shadow maps.

The following example shows a case with many dense static mesh actors and one animated directional

light. Raytraced shadows performs much than virtual shadow maps shadows as shown below.

On materials, it is possible to toggle raytraced shadows for a certain material. This will impact all meshes

referencing the material and its instances. Take note that it is not possible to override this option on

material instances. This only works on master materials.

11

The following graph illustrates the order of raytracing visibility.

Raytraced Area Lights
One of the advantages of using RT shadows is to get accurate soft area light shadows from rectangular

lights or other light types with large radius.

Area light shadow map Area light ray traced shadow

Master
Material

• 'Cast Ray Traced Shadows' overrides any
object referencing this master material

Material
Instance

• All material instances inhehrits the ray traced
shadow setting from their master material

Light Actors

• Overrides the shadow mode set in the project
settings for a specific light actor.

Project
Setting

• Set the default shadow mode for light actors

12

By default, the engine casts a ray per pixel which works for most cases. For more complex cases where

quality is the priority, it is possible to increase the number of raytraced samples to reduce any noise. Keep

in mind that this has direct impact on the GPU performance.

As mentioned earlier, the NVRTX branch includes Sampled Lights (RTXDI) which allows rendering area

lights shadows at fixed GPU cost with area light shadows comparable to offline path-tracers.

Reflections
As covered previously, Lumen solves reflections differently from UE4 raytracing reflections. It does screen

space traces when possible while preserving raytracing for off screen samples. Screen traces can be

disabled from the Lumen Reflection options in Post Process Volume to completely depends on ray traced

reflections:

Screen traces settings such as the trace distance and depth threshold are not exposed in Post Process

Volume, these settings can be tweaked through the following CVars:

CVar Description
r.Lumen.Reflections.

DistantScreenTraces

Whether to do a linear screen trace starting where Lumen Scene ends
to handle distant reflections.

r.Lumen.Reflections.

DistantScreenTraces.

DepthThreshold

Depth threshold for the linear screen traces done where other traces
have missed.

13

r.Lumen.Reflections.

DistantScreenTraces.

MaxTraceDistance

Trace distance of distant screen traces.

Reflection Optimization
Similar to legacy raytraced reflections in UE4, HW Lumen reflections performance can be optimized by

limiting some of the expensive calculations such as number of reflection bounces and/or skip casting rays

for rougher surfaces.

These settings are exposed in the Post Process Volume as shown in the screenshot.

Accurate Chrome/Mirror Reflections
Most of the times raytracing reflections against the surface cache is sufficient, especially if the scene

materials are mostly rough. For cases where accurate reflections are important, it is possible to switch

raytracing from surface cache to evaluating materials at hit points. This can be enabled in the project

settings as covered previously. However it can be overridden from the Post Process Volume for controlling

the effect locally.

Using Hit Lighting mode impacts the GPU performance in favor of having accurate reflections.

14

Lumen hardware raytracing
mirrored reflections against

Surface Cache

Lumen hardware raytracing
mirrored reflections against

Hit Lighting

Materials with World Position Offset
Generally materials with World Position Offset (WPO) are more challenging to render in raytracing as the

deformation applied in the vertex shader need to be reflected in the raytracing acceleration structure.

This causes additional performance cost to the BLAS updates so this effect is disabled by default for all

meshes.

Overriding ‘Evaluate World Position Offset’ in the raytracing section will applies the deformation in

secondary rays (i.e. reflections and GI) however with the surface cache mode, materials with WPO are not

supported properly. To work around this current limitation, it is possible is to override the reflection mode

to Hit Lighting.

15

Correct reflection of WPO material using Lumen

‘Hit Point’
Black reflection of WPO material using default

‘Surface Cache’ mode of Lumen

To keep the performance cost manageable in large scene, WPO only works for a short distance around

the camera, by default 50 meters. This can be adjusted using the following CVar:

r.RayTracing.Geometry.StaticMeshes.WPO.CullingRadius

The NVRTX branch provides a feature for efficiently raytracing large number of instances with WPO. This

allows ray tracing effects to scale well in large dynamic biomes with lots of vegetation.

Reflection Quality and Lumen Scene
As noticed previously, surface cache reflections are directly affected by the fidelity of Lumen Scene

representation. There are a few settings exposed in the post process volume that can be tweaked to

improve it. Most of the settings are grouped under the Lumen Global Illumination section. The group

name might be misleading however these settings are not limited to Lumen GI but also impact the Lumen

Surface Cache reflections since both depend on the simplified Lumen scene representation.

Under the Lumen Reflection section, there is one option (Quality) that can help in improving the

sharpness of Lumen reflections (but not fidelity of Lumen scene representation).

16

Increasing any of the previous settings might help with quality of the surface cache reflections, however

it increases the GPU cost.

Global Illumination
Several settings related to Lumen GI settings were already previously with Lumen Reflection. There are

few additional settings in the post process volume for controlling the Final Gathering quality and the

temporal amortization of the radiance cache. Increasing the Final Gather quality helps improving the

accuracy and stability of GI for scenes with small details and emissive objects and the expense of higher

GPU cost.

By default, UE utilizes screen probes for the final gathering. It is possible to fine tune its settings through

the CVars: r.Lumen.ScreenProbeGather.*

In 5.4, additional final gather mode were introduced. One of the new modes leverage ReSTIR. This is still

a prototype and can experimented with through the following CVars: r.Lumen.ReSTIRGather.*

Although Lumen GI and reflections works closely together, it is possible to disable Lumen GI individually

and keep only Lumen reflections. If Lumen reflections uses hit lighting, it is recommended also to disable

the distance fields to save memory and performance as these are not required anymore neither by Lumen

GI nor Lumen reflections.

Ambient Occlusion
Ambient Occlusion (AO) options still exist in the post process volume including raytraced ambient

occlusion (RTAO). However in order to activate RTAO, Lumen needs to be disabled. With Lumen, Short

Range AO is used instead. Short range AO is basically screen space directional occlusion which is useful

for adding micro details around small areas that is hard to capture with the Lumen GI alone.

Short Range AO can be toggled (for debugging purposes) from the Show->Lumen->Short Range Ambient

Occlusion.

17

Screen Space Direction
Occlusion On (default)

Screen Space Direction
Occlusion Off

Translucency
Translucent materials are supported by Lumen GI and reflections. By default, Lumen will depend on the

lower quality Radiance Cache to prioritize performance. Generally, this does not provide acceptable

reflections specially for highly gloss translucent materials.

This can be improved by enabling the High Quality Translucency Reflections option either in the project

settings or in the post process volume. This mode will render mirror reflections only for the first ‘front’

layer to the screen. As expected, this option incurs additional GPU cost when enabled.

Translucent material using
Radiance Cache for reflections

Translucent material with
accurate reflections (front

layer only)

18

By default, this option is applied to all translucent materials. However, it is possible to override it for a

specific material if needed for performance reasons by unchecking the Allow Front Layer Translucency in

the material editor.

In terms of refractions, as covered previously it is possible to leverage HW RT by enabling in the engine

settings the Ray Traced Translucent Refractions in the project settings.

Raytracing Debugging and Visualization
In complex scenes it might be challenging to debug a certain raytracing issue. Several tools are available

to aid in debugging raytracing in both editor and runtime development builds. This section will go through

some of the important modes.

In editor, the Ray Tracing Debug menu provides several visualization modes of the different raytracing

buffers and data structures. The same modes can be accessed in run-time through the CVar:

r.RayTracing.DebugVisualizationMode

The following will cover uses cases for some of the important visualization modes:

Instances
Instance count has direct impact on RT performance mainly due to the increased cost of TLAS updates.

TLAS is rebuilt every frame, and has a cost on the Rendering Thread, RHI Thread, and the GPU. These costs

are mostly proportional to how many mesh instances go into the acceleration structure. so, it is important

to keep the instance count under control. This mode will colorize individual instances as passed to the RT

structure to help in visually checking the complexity of the content.

19

Instances Overlap
For each instance a bounding box (BBox) is calculated to be used in Bounding Volume Hierarchy (BVH) to

accelerate the ray casting process.

Large overlapping between BBoxes increase the performance cost as a ray has to traverse more instances.

This visualization mode shows the BBoxes for all instances and color code the amount of overlapping.

The tips and tricks section covers few examples and recommendations for minimizing BBox overlapping.

Dynamic instances
Dynamic instances where its geometry can deform such as Skeletal Meshes, Landscape morphing level of

details, Niagara Particles, … etc have to rebuild their BLAS every frame. This impact RT performance

negatively specially if these meshes have high triangles count.

20

This visualization mode help identifying all dynamic instances in the scene by color coding them in green.

Picker
This is an interactive debugging tool that allows querying any instance or triangle in the ray tracing scene

for additional information. The Picker mode can operate on two different domains: Triangles and

Instances. The mode can be set through the CVar: r.RayTracing.Debug.PickerDomain

Lumen Debugging and Visualization
This section covers some of the visualization modes available for debugging different Lumen components.

21

Screen Traces
Reflection screen traces have the highest priority as explained previously. So to isolate off screen

reflections it is useful to be able to toggle screen traces either in editor through the Show->Lumen-

>Screen Traces or using CVar: r.Lumen.Reflections.ScreenTraces

Surface Cache
Missing or invalid surface cache will cause issues with Lumen components that depend on it. To validate

the surface cache, it is possible to visualize it in editor using the Surface Cache mode under the Lumen

Visualization menu.

Ideally the scene should be covered properly by surface cache showing colors other than solid pink for

missing surface cache coverage or yellow for culled.

22

In cases where a specific object is failing the surface cache, it is possible to visualize the card placements

that are used for auto generating the surface cache to further debug the issue.

The following CVar enables the card placement visualization:

r.Lumen.Visualize.CardPlacement

Far Fields
When leveraging Far Fields in open world scenes, it is useful to visualize the generated far fields meshes

that are used by Lumen for far objects. In editor, Far Field can be visualized using the ray tracing debug

visualization mode for FarField. Or through CVars:

• r.RayTracing.DebugVisualizationMode FarField

• Showflag.RayTracingDebug 1

Ideally the far fields should be the same as the first level of the generated HLODs. In case this is not the

case, this could be an issue related to HLODs.

For additional information about debugging Lumen components, it is recommended to refer to the official

documentation: Lumen Technical Details | Epic Developer Community (epicgames.com)

Raytracing Performance Profiling
This section covers some of the performance stats available in the engine to get more detailed breakdown

of the raytracing perf on different threads. For in-depth performance profiling it is recommended to use

dedicated tools such as Unreal Insights.

STAT SceneRendering
This stat provides a breakdown for most of the tasks performed on the render thread (CPU) including

raytracing related tasks. Regarding RT, the important regime to pay attention to is the

GatherRayTracingWorldInstances. This is directly impacted by the instances count which is also listed

under the counter section in the same stat.

https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal-engine

23

STAT D3D12RayTracing
This stat focuses mainly on ray tracing costs on the RHI Thread (CPU) in addition to several useful counter

and memory usages. With this stat it is possible to get more metrics about the performance and memory

related to the update BLAS for dynamic objects.

STAT GPU
Most GPU tasks are listed in this stat. Raytracing related costs are mainly allocated under the following

regimes:

- RayTracingScene: Includes TLAS updates.

- RayTracingGeometry: Includes BLAS builds for the dynamic geometry.

24

- RayTracingPrimaryRays: This marks the cost of ray tracing primary ray for translucency objects.

- RayTracingTranslucency: This wraps the translucency pass cost, but it excludes the inner cost of

the RayTracingPrimaryRays.

Additional ray tracing costs are included in:

- LumenReflection: This includes the RT cost when enabled for reflections. It could be either the hit

lighting cost or surface cache depending on the project settings.

- LumenSceneLighting: This is mainly for Lumen Scene updating. It includes some of the RT cost

when enabled for GI.

Tips and Tricks
With most of the essential UE5 ray tracing systems covered, this section introduces several tips and tricks

related to content creation to have the best performance out or raytracing in UE5.

Geometry Complexity
A complex mesh with excessive wasted volume in its bounding box can impact ray tracing performance

negatively. Consider splitting the mesh to achieve tighter bounding boxes for optimal raytracing

performance.

Separating complex meshes not only helps BLAS but can benefit culling and streaming. However,

increasing the number of objects can negatively impact TLAS. Striking a balance between BLAS and TLAS

is key for optimal performance.

25

Kit Bashing
Kit bashing is a common approach to assemble levels. This approach becomes more popular with the wide

availability of marketplace and Quixel assets. So with this approach most of the assets are generic/non-

original assets that are not created specifically for the assembled scene.

Because such assets are not created to fit the level design, it causes high overlap between assets which

increases the BVH complexity, leading to longer traversal times and slower performance.

For large intersections it might be recommended to create custom mesh that better fits the level layout.

If creating a custom mesh is not possible and the mesh is mostly hidden under multiple layers of

intersecting meshes consider disabling ray tracing for it.

Sky Boxes
As mentioned earlier, HW RT performance impacted negatively by excessive meshes overlap. Large

meshes that overlap the entire scene are a performance issue, such as a skybox. These meshes should

have their ray tracing visibility disabled.

Lumen Surface Cache
Lumen generates the surface cache automatically by parameterizing the scene using cards. Cards count

and placement depends on the mesh shape. Thus, it is recommended to build the mesh from relatively

simple shapes and avoid complex merged meshes. For example, instead of creating an interior building

from one complex mesh with all walls and ceiling merged. It is recommended to assemble it in UE5 from

individual modular walls. This modular approach is also beneficial to other areas:

- Memory (due to better instancing opportunities)

- Raytracing performance (due to potentially better acceleration structure).

In cases where complex meshes are inevitable, it is possible to increase the number of Lumen cards to

minimize the surface cache missing coverage. This can be done for each asset from the static mesh editor:

26

Surface cache coverage for different content build approach and Lumen cards count

HLODs and Lumen Far Fields
In addition to culling raytracing instances, one approach to minimize the processed instances in large open

world scenes is to couple culling with HLODs and Far Field to optimize and scale down Lumen Hardware

Ray Tracing performance.

Nanite Meshes
While Nanite can render large, dense meshes without manual optimization, it falls back to a static mesh

for raytracing. Having the fallback mesh as one large dense mesh can negatively impacts raytracing. To

maintain Nanite RT efficiency, consider breaking large meshes (like large detailed mountains) into smaller

chunks and tweak their fallback mesh triangle count.

This process can be automated in UE using geometry scripting or using an external DCC as shown in the

screenshot below.

27

Skeletal Meshes
As mentioned earlier, skeletal meshes are one of the dynamic mesh types that requires rebuilding their

BLAS every frame which can incur significant cost. The BLAS rebuilds are proportional to the total number

of triangles. To minimize the cost of BLAS rebuilds, it is possible to use a lower LoD (with significantly less

triangles) for ray tracing instead of LoD0 that has the highest triangle count.

Another approach is to avoid unnecessary skeletal meshes such as skinning non-deformable objects like

vehicles. Ideally non-deformable vehicles should be assembled in-engine from static meshes for more

efficient raytracing and animation.

For further optimization, merge vehicle meshes into a single static mesh for distant LoDs where

animation details are not noticeable. This can improve scalability and performance in your open-world

game.

28

Masked Materials
In ray tracing, masked materials have more expensive shader evaluation than opaque materials due the

invocation of any-hit shader that interrupts hardware intersection search.

For scenes with lots of vegetation this might add up and show negative impact on ray tracing

performance on the GPU. When possible, minimizing the area not marked as opaque is a simple way to

increase performance. Using more triangles to define the non-opaque area more accurately is likely a

good trade-off, however in some cases it is possible to achieve this without increasing triangle by just

modifying the topology as shown in the example below:

In the NVRTX branch, meshes with masked materials can leverage the new Opacity Micro Maps to

encode the mask opacity in micro-triangles and makes it possible to trace rays at high performance

without the need for the shader invocations.

Complex Materials
The material editor in UE5 allows creating complex effects which might not be practical to evaluate in ray

tracing effects for both performance and visual reasons.

It is possible to branch the shader logic for raytracing effects using the Ray Tracing Quality Switch Replace

node. This node allows materials to use a simpler/different version of themselves in HWRT while keeping

the complex shader for primary rasterization thus dramatically reducing HWRT cost. This should be set up

in the master materials so that all material instances can benefit from this inherited setting for maximum

efficiency.

Additionally, this node can be used for reducing noise in raytracing due to high frequency procedural

textures. One example is a material using detailed normal map, where the raytracing quality switch can

provide flat normal map for secondary rays.

29

Lumen hardware raytracing reflections with screen traces set to off

Since Lumen is solving reflections in UE5, this node behaves a bit differently from UE4. For solving

reflections, Lumen prioritizes screen-space tracing over hardware raytracing. As a result, materials using

this node won’t work at the screen-space tracing phase. The node only works with off-screen hardware

tracing.

	Introduction
	Raytracing in UE5 vs UE4
	Enabling Raytracing in UE5
	1. Hardware Raytracing
	2. Shadows
	3. Global Illumination (GI)
	4. Reflections
	5. Refractions

	Lumen Raytracing Overview
	Nanite Raytracing Overview
	Fallback Mesh
	Streamed Out Mesh

	Basic Raytracing Settings
	Raytracing Culling
	Raytracing Visibility
	Shadows Overrides
	Raytraced Area Lights
	Reflections
	Reflection Optimization
	Accurate Chrome/Mirror Reflections
	Materials with World Position Offset
	Reflection Quality and Lumen Scene

	Global Illumination
	Ambient Occlusion
	Translucency

	Raytracing Debugging and Visualization
	Instances
	Instances Overlap
	Dynamic instances
	Picker

	Lumen Debugging and Visualization
	Screen Traces
	Surface Cache
	Far Fields

	Raytracing Performance Profiling
	STAT SceneRendering
	STAT D3D12RayTracing
	STAT GPU

	Tips and Tricks
	Geometry Complexity
	Kit Bashing
	Sky Boxes
	Lumen Surface Cache
	HLODs and Lumen Far Fields
	Nanite Meshes
	Skeletal Meshes
	Masked Materials
	Complex Materials

